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Pattern formation in prey-taxis systems
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In this paper, we consider spatial predator–prey models with diffusion and prey-taxis. We investigate
necessary conditions for pattern formation using a variety of non-linear functional responses, linear and
non-linear predator death terms, linear and non-linear prey-taxis sensitivities, and logistic growth or growth
with an Allee effect for the prey. We identify combinations of the above non-linearities that lead to spatial
pattern formation and we give numerical examples. It turns out that prey-taxis stabilizes the system and
for large prey-taxis sensitivity we do not observe pattern formation. We also study and find necessary
conditions for global stability for a type I functional response, logistic growth for the prey, non-linear
predator death terms, and non-linear prey-taxis sensitivity.

Keywords: predator–prey models; prey-taxis; stability; pattern formation; biological control

AMS Subject Classification: 92C15; 92D25; 92D40; 34D23

1. Introduction

There are basically three mechanisms for spatial pattern formation in systems of two reaction–
advection–diffusion equations; the Turing patterns [25], chemotaxis patterns [12], and patterns
created through reaction kinetics, e.g. the Brusselator [15]. Turing patterns typically arise for a
fast inhibitor and a slow activator. Chemotaxis patterns are based upon aggregation towards a
chemical signal.

For a predator–prey system without prey-taxis, Okubo and Levin [26] note that anAllee effect in
the functional response and a density-dependent death rate of the predator are necessary to generate
spatial patterns. The inclusion of species migration (constant flow) as an additional transport
process may also increase the possibility of pattern formation [13]. The directional movement
of zooplankton plays a role in generating patterns in a plankton community model [22]. For the
same system, diffusion also generates pattern formation, and the combined effects of diffusion
and velocity result in spatial pattern and an instability like travelling waves, i.e. travelling patchy
distributions [23]. Indeed, the magnitude of the relative flow velocity determines the flow-induced
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instability [28].Various travelling wave solutions have been studied with similar systems [4,18,33].
In particular, [4,33] also considered escaping behaviours of prey from predation.

For chemotaxis models, spatial patterns have been studied analytically and numerically
(see, for example, [7,35,36]). In contrast to the rich development of chemotaxis models, the
pattern formation of prey-taxis models is still open to wide investigations. Lewis [20] studied
pattern formation in plant and herbivore dynamics and herbivory-taxis was seen to reduce the
likelihood of pattern formation. Arditi et al. [3] and Chakraborty et al. [6] considered a different
aspect of predator response to the prey distribution that the velocity of the predators is dependent
on prey density.

The goal of this paper is to investigate the contribution of predator and prey movements to
spatial pattern formation in predator–prey systems. In particular, we consider foraging behaviour
of predators that move towards high prey density. For that, we extend the predator–prey diffusion–
reaction model in [27] by incorporating the concept of prey-taxis [14].

1.1. The model

A prey-taxis model was derived by Kareiva and Odell in [14], and they studied predator aggregation
in high prey density areas. Later the model was applied to estimate the mean travel time of a
predator to reach a prey resource [9]. Here we extend the Kareiva and Odell model to studying
pattern formation.

The prey-taxis model discussed below contains both diffusion terms that might lead to Turing-
type instabilities and a prey-taxis term that might lead to aggregation of predators on local
concentrations of prey. In this paper, we will investigate the relative importance of these effects
for spatial pattern formation. Prey-taxis allows predators to search more actively for prey, and
can generate different spatial patterns from those formed in models without prey-taxis. Generally
speaking, we find that prey-taxis tends to stabilize the predator–prey interactions.

The characteristic feature of prey-taxis equations is that taxis is incorporated as an advection
term [14,17]. In this paper, we consider the following prey-taxis model

vt = εvxx + vf (v) − nh(v, n), (1)

nt = nxx − (χ(v)vxn)x + γ n(h(v, n) − δ(n)), (2)

where ε and γ are positive dimensionless parameters. Here v(x, t) and n(x, t) are prey density
and predator density, respectively. f (v) is the per capita prey population growth rate, h(v, n) is
the functional response, and γ δ(n) is the mortality rate of the predator without the prey. The prey
sensitivity, χ(v), is a non-negative non-increasing function of the prey density, and as example,
we choose χ(v) = χ , or χ(v) = χ/v.

To investigate the pattern formation properties of Equations (1) and (2), we first consider (1)
and (2) without taxis, i.e. χ = 0. Secondly, we study the full model (1) and (2) with χ �= 0. In
Section 2.1, we study pattern formation for Equations (1) and (2). It turns out that pattern formation
crucially depends on the functional forms of functional responseh(v, n), on the death rate δ(n), and
on the prey growth kinetics f (v). We investigate typical cases, that are discussed in the literature,
see, e.g. [34]. For h(v, n) we consider type I (linear) functional response h(v, n) = v, type II
(hyperbolic) functional response h(v, n) = (α + 1)/(α + v)v, linear-ratio functional response
h(v, n) = ν0(v/n), and hyperbolic-ratio functional response h(v, n) = μv/(dn + v). The death
rate δ(n) is either constant δ(n) = δ or density-dependent δ(n) = δ + νn. For the prey kinetics,
we assume either logistic growth f (v) = 1 − v or an Allee effect f (v) = K(1 − v)(v − a).
The above parameters α, ν0, μ, d , ν, K , and a are all positive constants. We summarize the
choices of these functions, the corresponding pattern formation results, and the corresponding
section in Table 1.
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Table 1. The possibility of spatial pattern formation is considered in the spatial predator–prey system (1) and (2) with
various functional responses, h, prey population dynamics, f , and predator death rates, δ.

Pattern formation
Functional Death rate Prey growth Pattern formation with diffusion
response h(v, n) δ(n) = δ + νn f (v) without taxis and taxis Section

Linear Density-dependent (ν �= 0) Allee Yes Yes for small taxis 2.1 and 2.2
Linear ratio Constant (ν = 0) Logistic No No 2.3
Hyperbolic ratio Constant (ν = 0) Logistic Yes Yes for small taxis 2.4
Hyperbolic Density-dependent (ν �= 0) Logistic Yes Yes for small taxis 2.5
Hyperbolic Constant (ν = 0) Logistic No No 2.6
Linear Density-dependent (ν �= 0) Logistic No No 2.7

Note: We study type I (linear) functional response of the form h(v, n) = v, type II (hyperbolic) functional response of the form h(v, n) =
(α + 1)/(α + v)v, linear ratio functional response of the form h(v, n) = ν0(v/n), and hyperbolic-ratio functional response of the form
h(v, n) = μv/(dn + v). Constant death rate means δ(n) = δ and density-dependent death rate means δ(n) = δ + νn. For logistic growth
rate, we have f (v) = 1 − v and for an Allee effect we have f (v) = K(1 − v)(v − a). The parameters α, ν0, μ, d, ν, K , and a are all
positive constants.

In Section 3 we consider global stability of the system (1) and (2) with a type I functional
response, density-dependent predator death rate, logistic prey growth rate, and a prey-taxis term.
We construct a Lyapunov functional and find that for some condition the coexistence steady
state is globally stable. We finish the paper with a discussion and suggestions for further studies
(Section 4).

Note that in this paper we implement efficient and accurate numerical methods for each term
via a fractional step method [19,36] by using MATLAB. For diffusion and reactions terms, we
use the Crank–Nicolson scheme and a second-order Runge–Kutta scheme, respectively [1,32].
For the advection term, we use a high-resolution central scheme [16].

2. Pattern formation in prey-taxis systems

In this section we focus on constant prey-taxis χ(v) = χ and study Equations (1) and (2) on an
interval [0, L] with homogeneous Neumann boundary conditions given by

vx(0, t) = 0, vx(L, t) = 0, nx(0, t) = 0, nx(L, t) = 0. (3)

We first consider Equations (1) and (2) for general f (v), h(v, n), and δ(n) and study the specific
functional forms later. Since we are interested in understanding biological phenomena, the prey
growth function f (v) can be negative with an Allee effect, but the functional response h(v, n) is
assumed non-negative. We assume that a non-trivial coexistence steady state (vs, ns) exists.

In order to investigate pattern formation, we follow the standard Turing stability analysis
(see [25,17] for details).

We first assume that (vs, ns) is linearly stable for the purely kinetic equations.

Assumption

A + D < 0, AD − BC > 0, (4)

where

A = (vsf
′(vs) + f (vs) − nshv(vs, ns)),

B = −h(vs, ns) − nshn(vs, ns),

C = γ nshv(vs, ns),

D = γ (h(vs, ns) + nshn(vs, ns) − δ(ns) − nsδ
′(ns)).

(5)
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Assumption (4) guarantees linear stability of (vs, ns).

Now, we consider the full reaction–taxis–diffusion system (1) and (2) and obtain the following
characteristic equation for an eigenvalue λ of the linearization at (vs, ns):

λ2 − M1(k
2)λ + M2(k

2) = 0, (6)

where

M1(k
2) = A + D − (1 + ε)k2, (7)

and

M2(k
2) = AD − BC + εk4 − (A + εD + Bχns)k

2, (8)

where A, B, C, and D are defined in equation (5) and k denotes the wave number. Non-negative
ε and k2 guarantee M1(k

2) ≤ A + D < 0 for all k, so the only way λ(k2) can be positive is
the case that M2(k

2) < 0 for some k2. Hence, a necessary condition for pattern formation is
A + εD + Bχns > 0. Due to negative B (see Equation (5)), indeed positive χ tends to inhibit
A + εD + Bχns from becoming positive, as shown in the following lemma.

Lemma 2.1 Assume that A, B, C, and D are defined in Equation (5) and ε is positive. In
addition, if AD − BC > 0 is assumed as in Equation (4), then there exists χ∗ ≥ 0 such that
M2(k

2) > 0 for all k and all χ ≥ χ∗. In this case, the homogeneous solution (vs, ns) is linearly
stable.

Proof Since AD − BC > 0 and ε > 0, positive −(A + εD + Bχns) guarantees that M2(k
2) >

0. From the expression A + εD + Bχns = 0, we can isolate χ and set this χ as χ0. Then we
have χ0 = −(A + εD)/Bns > 0. We now define χ∗ = max(χ0, 0). We have χ∗ ≥ 0 and for all
χ ≥ χ∗, we have M2(k

2) > 0 independent of the value k. �

Therefore, prey-taxis tends to reduce the occurrence of dispersal-induced instability. It is indeed
the predator diffusion that is crucial to dispersal-induced instability. When prey act anti-predator
defensive behaviours such as kicking and attacking and show chemical defences [21], predators
may retreat from high prey area, in which case χ in Equation (8) can be negative. As a result,
a predator–prey system may generate pattern formation. But here we do not consider this case
in detail. In the absence of predators, the prey diffusion would reduce local prey maxima and
equilibrate the prey distribution. If predators are present and if they are attracted to local prey
maxima through prey-taxis, then the reduction of local prey maxima is enhanced. Hence, if the
taxis component is strong enough, we might not expect pattern formation. This is indeed the case,
as given in Lemma 2.1. For a specific example, we refer to Section 2.2.

In the following subsections, we consider specific choices for the functional responses, h, the
death rate of the predator, δ, and prey growth rate, f . The ability of the prey taxis model (1)
and (2) to exhibit a spatial pattern crucially depends on the parameter functions h(v, n), δ(n), and
f (v). Thus, in this section, we study various typical cases separately. An overview of the cases
and the corresponding results is given in Table 1.

2.1. Type I functional response, density-dependent predator death rate, and Allee effect with
diffusion only

In this subsection, we show that pattern formation is possible when there is a type I functional
response and an Allee effect along with a density-dependent predator death rate (Table 1, row 1).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
1
8
:
3
8
 
4
 
F
e
b
r
u
a
r
y
 
2
0
1
0



Journal of Biological Dynamics 555

We consider an Allee effect on the prey population dynamics f (v) = K(1 − v)(v − a) with
0 < a < 1 and K = 4/(1 − a)2, a type I functional response, h(v, n) = v, a density-dependent
predator death rate, δ(n) = δ + νn, ν ≥ 0, and no taxis, i.e. χ = 0. Here the parameter a is a
threshold, below which the prey population declines. Okubo and Levin [26] argued that a predator–
prey model with dispersal may generate diffusion-driven instability if the mortality of the predator
depends on the population density and the per-capita growth rate of the prey is determined by an
Allee effect. Note that the trivial steady state (v, n) = (0, 0) is locally stable because for (v, n) =
(0, 0) the characteristic polynomial for purely kinetic equations has two negative eigenvalues,
λ = −γ δ and λ = −Ka. We assume biologically relevant parameters in the region 0 < δ < 1
and 0 < a < 1. For the prey-only steady state (v, n) = (1, 0), the characteristic polynomial has
one positive eigenvalue λ = γ (1 − δ) and one negative eigenvalue λ = −K(1 − a).

For the homogeneous coexistence steady state (vs, ns), we find

A = Kvs(1 + a − 2vs), B = −vs, C = γ ns, D = −γ nsν, (9)

and M1(k
2) and M2(k

2) are given by

M1(k
2) = A + D − (1 + ε)k2, (10)

M2(k
2) = AD − BC + εk4 − (A + εD)k2. (11)

It is noted that the sign of A depends on the sign of 1 + a − 2vs.
Here we set v̄ = (1 + a)/2. Hence, when vs > v̄, A is negative and when vs < v̄, A is positive.

Recall that the coexistence steady state (vs, ns) comes from the intersection of the two nullclines:
v − δ − νn = 0 and K(1 − v)(v − a) − n = 0 (see Figure 1).

Figure 1. The v-nullcline N = K(1 − V )(V − a) is shown as a solid curve. For two values of ν, we show
the corresponding n-nullcline, N = (V − δ)/ν as a dashed line and a solid line. The equilibrium (vs, ns) is the
intersection of the nullclines. We have chosen two values of ν so that vs < v̄ for ν1 and vs > v̄ for ν2 with ν1 < ν2.
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First, we consider vs > (1 + a)/2. Since vs > v̄, we find that at v = vs the v-nullcline is above
the n-nullcline. This means that K(1 − v̄)(v̄ − a) > (v̄ − δ)/ν, which translates into the condition

a + 1 < 2(δ + ν).

For this case we prove stability.

Lemma 2.2 Assume that h(v, n) = v, δ(n) = δ + νn, f (v) = K(1 − v)(v − a), and χ = 0. If
a + 1 < 2(δ + ν), then no pattern formation occurs about the coexistence steady state (vs, ns)

for the system (1) and (2).

Proof The condition a + 1 < 2(δ + ν) implies that vs > (1 + a)/2. Hence A < 0. In addition,
we find B < 0, C > 0, and D < 0 and A < 0, B < 0, and D < 0 imply M2(k

2) = AD − BC +
εk4 − (Aε + D)k2 > 0 for all real k. Hence, we cannot expect diffusion-taxis-driven instability
about the coexistence steady state. �

In Figure 1 it is noted that vs should be between a and 1, i.e. a < vs < 1, otherwise ns is
negative. In Lemma 2.2, we considered that vs > (1 + a)/2 and found no pattern. Thus we now
consider a < vs < v̄ = (1 + a)/2. First we investigate how many vs may exist between a and v̄,
and then we find conditions for the existence of vs between a and v̄.

The v values for the coexistence steady state are obtained from

Kνv2 − (Kν(1 + a) − 1)v + Kνa − δ = 0. (12)

When a < δ, Figure 1 shows that Equation (12) has two real roots. Indeed, for the root less than
a, ns would be negative, which is not biologically relevant. Hence, when a < δ, Equation (12)
has one biologically relevant root. In addition, vs < v̄ leads to a > 2(δ + ν) − 1. Therefore, for

2(δ + ν) − 1 < a < δ, (13)

the biologically relevant coexistence state exists and its v value is located between δ < vs < v̄.
When a > δ, we may expect two positive roots from Equation (12). However, a simple com-

putation of Equation (12) shows that we cannot have two positive roots. Under assumption (13),
the biologically relevant solution of Equation (12) is given by

vs = Kν + Kνa − 1 + √
K2ν2a2 + (−2Kν − 2K2ν2)a + K2ν2 + 1 − 2Kν + 4Kνδ

2Kν
. (14)

The discriminant in Equation (14) is zero for

v = Kν + Kνa − 1

2Kν
= 1 + a

2
− 1

2Kν
. (15)

Equations (14) and (15) give a condition for the existence of the coexistence steady state,

vs ≥ v = 1 + a

2
− (1 − a)2

8ν
,

which will be used to show that AD − BC > 0, whenever vs exists.
We find A > 0 from the condition (13). Additionally, from Equation (9) we find B < 0, C > 0,

and D < 0. The stability condition A + D < 0 leads to a condition

Kvs(1 + a − 2vs) < γ (vs − δ). (16)

In Figure 2 we plot the left- and right-hand sides of Equation (16) as a function of vs.
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Figure 2. Plot of the left- and right-hand sides of Equation (16) as function of vs. The region of A + D < 0 is where
the dashed line lies above the curve.

As γ varies from zero to infinity, the intersection of Kvs(1 + a − 2vs) and γ (vs − δ) changes
from vs = (1 + a)/2 to vs = δ. Given a value for vs, we can always choose γ small enough
such that condition (16) is not true. Thus, γ should be greater than a minimum value, γ0. Here
γ0 = Kvs(1 + a − 2vs)/(vs − δ), where vs is computed in Equation (14). Therefore, for γ > γ0,
we have A + D < 0.

Thus a biologically relevant vs is in the interval

max

(
δ,

1 + a

2
− (1 − a)2

8ν

)
≤ vs <

a + 1

2
. (17)

We found that Equation (17) holds under assumption (13).

Theorem 2.3 Assume that h(v, n) = v, δ(n) = δ + νn, f (v) = K(1 − v)(v − a), and χ = 0.
If a satisfies condition (13), then (i) the coexistence steady state (vs, ns) exists, (ii) AD − BC > 0,

(iii) if in addition, there exists ε1 > 0 such that for each ε < ε1 there exists a non-empty interval
[k1, k2] of unstable modes, so we may expect diffusion-driven instability about the coexistence
steady state, and (iv) if ε > ε1, then (vs, ns) is linearly stable.

Proof

(i) It was shown that condition (13) implies the existence of a unique positive root vs.
(ii) When a positive vs exists, vs satisfies condition (17). Now we consider the condition for

AD − BC > 0.

AD − BC = −Kvs(1 + a − 2vs)γ nsν + γ nsvs

= γ nsvs(1 − Kν(1 + a − 2vs)) > 0,

which holds if vs > (1 + a)/2 + 1/2Kν. Indeed, this is true by condition (17). Therefore,
AD − BC is always positive under the assumption of the existence of a coexistence steady
state.
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Figure 3. Plot of the eigenvalue λ(k2) as a function of T with T = k2.

(iii) M1(k
2) and M2(k

2) are given by Equations (10) and (11), respectively, with A = Kvs(1 +
a − 2vs), B = −vs < 0, C = γ ns > 0, and D = −γ nsν < 0.

Hence, A + D < 0 guarantees M1(k
2) = A + D − (1 + ε)k2 < 0. If ε ≥ 1, then D < 0

gives A + Dε ≤ A + D < 0, hence M2(k
2) is always positive. On the other hand, setting

ε0 = Kvs(1 + a − 2vs)/γ (vs − δ), for ε < ε0, we have A + Dε > 0 and M2(k
2) can be

negative for some k.
Setting T = k2, the quadratic equation M2(T ) = 0 may have two roots, T1,2 (see Figure 3).

By solving this quadratic equation, it can be shown that for ε < ε1 there exist real k1 and k2.
For unstable modes k ∈ [k1, k2] with k1 = √

T1 and k2 = √
T2, we have Re(λ)> 0. Hence

we may expect diffusion-driven instability about the coexistence steady state (see also [30]).
(iv) If ε > ε1, then M2(k

2) is always positive for all k. Hence we cannot expect diffusion-driven
instability about the coexistence steady state. �

Segel and Jackson [30] also considered diffusion-driven instability in a predator–prey interac-
tion. They used δ(n) = νn and f (v) = 1 + Kv, and found the wavelength of the instability (see
also [26] for general discussion on diffusion-driven instability in a predator–prey interaction).

In particular, for ε 	 1, we apply a perturbation method to approximate two values T1,2, that
is, T1 = (AD − BC)/A and T2 = A/ε. Therefore, for (AD − BC)/A < T < A/ε, M2(T ) is
negative.

For example, we consider an interval [0, L] with homogeneous Neumann boundary condition
given by Equation (3). If k(n) = nπ/L in [k1, k2] with positive integer n, then pattern formation
occurs. Thus, we can calculate a minimum domain size for pattern formation. Since k1 < k(n) <

k2, we substitute k(n) = nπ/L and rearrange the inequality with respect to L. Then we have

nπ

k2
< L <

nπ

k1
,

which should hold for some integer n. Therefore, the minimum length for possible instabilities is
L∗ = π/k2, and for L < π/k2, we cannot expect pattern formation.

In Figure 4, we show phase portraits of the predator–prey system (1) and (2) without dispersal
terms. As γ increases, the coexistence steady state bifurcates from an unstable spiral to a stable
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Figure 4. Coexistence steady state is shown to be locally asymptotically stable for system (1) and (2) without dispersal
terms and with f (v) = 16(1 − v)(v − 0.5), h(v, n) = v, and δ(n) = 0.6 + 0.1n. Time step is dt = 0.01 and γ = 13.
Here the coexistence steady state is (vs, ns) = (0.695, 0.952). Available in colour online.

spiral. From simulations with various γ , it is noted that an unstable limit cycle occurs for a cer-
tain range of γ . When γ is smaller than the lower bound of this range, the coexistence steady
state is an unstable spiral. When γ is bigger than the upper bound of the range, the coexistence
steady state is a stable spiral with non-empty basin of attraction. Figure 5 shows that the stable
coexistence steady state without dispersal terms becomes unstable if diffusion terms are intro-
duced. As a result, patterns are generated. We demonstrate a snapshot of the asymptotic prey
and predator distributions in Figure 6. It is noted that high prey density area seems to attract
more predators. Moreover, the patch size of prey is seen to be an important factor to attract more
predators.

2.2. Type I functional response, density-dependent predator death rate, and Allee effect with
diffusion and prey-taxis

We now include prey-taxis in the calculations of the previous subsection (Table 1, row 1). We
consider the reaction–diffusion–taxis system (1) and (2) for χ(v) = χ . We consider Allee-type
growth for the prey, f (v) = K(1 − v)(v − a) with 0 < a < 1 and K = 4/(1 − a)2, a type I
functional response, h(v, n) = v, and a density-dependent predator death rate, δ(n) = δ + νn.
We have shown in the previous subsection that for χ = 0, pattern formation may occur. In this
subsection, we consider how the conditions of pattern formation change if χ is introduced.
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Figure 5. Coexistence steady state is shown to be locally unstable for system (1) and (2) with χ(v) = 0.0,
f (v) = 16(v − 0.5)(1 − v), h(v, n) = v, and δ(n) = 0.6 + 0.1n. Spatial grid size is dx = 0.25, time step dt = 0.01, and
γ = 14 with 60 time units. The diffusion coefficient ε is 0.01. Here the coexistence steady state is (vs, ns) = (0.695, 0.952).
Available in colour online.

Figure 6. With the same parameters as in Figure 5, we demonstrate a snapshot of the spatial prey and predator
distributions after 60 time units between dimensionless spatial locations 10 and 15. Available in colour online.

Lemma 2.4 Assume a, δ, and ε satisfy instability conditions of Theorem 2.3. Then from
Lemma 2.1 we compute

χ∗ = Kvs(1 + a − 2vs) + εγ (vs − δ)

vsns
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such that the coexistence steady state (vs, ns) for system (1) and (2) is linearly stable for each
χ ≥ χ∗. For χ < χ∗, there exists an interval [k1, k2] of unstable modes.

Proof Here M1(k
2) from (7) is the same as in the case of diffusion-only (10) so that it is negative

for all k. But M2(k
2) from (8) is different by the term Bχns. Setting M2(k

2) = 0 and T = k2, we
obtain after rearrangements

εT 2 − (A + εD)T + AD − BC = BχnsT . (18)

Figure 7 shows three typical situations of intersections of the left- hand and the right-hand sides
of Equation (18). In the diffusion-only case, we saw that there may be two roots, T1 and T2, of
εT 2 − (A + εD)T + AD − BC = 0 under the conditions that A + εD > 0. Between T1 < T <

T2, εT 2 − (A + εD)T + AD − BC is negative. In order for M2(T ) to be negative, the left-hand
side of Equation (18) should be less than the right-hand side. In Figure 7, the region T3 < T < T4

where the solid curve is below the dashed line makes M2(T ) negative. As we can see in Figure 7,
T3 is always greater than T1 and T4 smaller than T2 for positive χ .

As χ gets bigger, the slope of the line of the right-hand side of Equation (18) is steeper so that for
χ ≥ χ∗ there will be no intersection of the curve and the line (see Figure 7). In that case, M2(T )

is always non-negative, which leads to negative eigenvalues and to stability. In Theorem 2.3, for
χ = 0, we found a threshold of ε0 = Kvs(1 + a − 2vs)/γ (vs − δ). For χ �= 0, the threshold for
pattern formation is

ε1 = Kvs(1 + a − 2vs) − vsχns

γ (vs − δ)
≤ ε0.

Thus, as χ gets bigger, ε1 requires smaller value ε for pattern formation. �

Figure 4 shows that the coexistence steady state for the spatially homogeneous predator–prey
system (1) and (2) without dispersal terms is stable. In Figure 5, introducing the diffusion term
generates patterns. The numerical simulations confirmed that when we introduce a large prey-taxis
term, patterns disappear (not shown here).

Figure 7. Plot of the left- and right-hand sides of Equation (18) as a function of T with T = k2. The solid curve is from
the left-hand side of Equation (18) and the dashed lines are from the right-hand side of Equation (18). As χ increases, the
number of intersection changes from zero to two. Note that B is negative.
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2.3. Linear ratio-dependent functional response, constant predator death rate,
and logistic growth

In this subsection, we show that pattern formation is impossible when there is a linear ratio
functional response and logistic growth along with a constant predator death rate (Table 1, row
2). We consider the linear ratio-dependent functional response, h(v, n) = ν0(v/n), with logistic
growth for the prey, f (v) = 1 − v, and a constant predator death rate, δ(n) = δ, and ν0 is a
constant parameter. Thus the coexistence steady state is now (vs, ns) = (1 − ν0, ν0/δ(1 − ν0)),
which is biologically relevant for 0 ≤ ν0 < 1. In this case, we obtain

A = −(1 − ν0), B = 0, C = γ ν0, D = −γ δ.

We observe that A < 0, D < 0, B = 0, AD − BC > 0, and M2(k
2) = AD − BC + εk4 −

(A + εD + Bχns)k
2 > 0 for all k. Hence, the homogeneous steady state is linearly stable.

Lemma 2.5 Assume f (v) = 1 − v, h(v, n) = ν0(v/n), and δ(n) = δ + νn, then no pattern for-
mation occurs about the coexistence steady state, (vs, ns) = (1 − ν0, ν0/δ(1 − ν0)), for system
(1) and (2).

2.4. Hyperbolic ratio-dependent functional response, constant predator death rate,
and logistic growth

We now modify the analysis of the previous subsection to include a hyperbolic ratio rather than
linear ratio functional response. This allows for the possibility of pattern formation, providing
that taxis is sufficiently small (Table 1, row 3). We consider hyperbolic ratio-dependent functional
response, h(v, n) = μv/(dn + v) with logistic growth for the prey, f (v) = 1 − v, and a constant
predator death rate, δ(n) = δ, and μ ≥ 0 and d ≥ 0 are constants. Thus the coexistence steady
state in this case is

(vs, ns) =
(

(d − μ + δ)

d
,
(d − μ + δ)(μ − δ)

d2δ

)
,

which is biologically relevant for δ < μ < d + δ. In this case, we have

A = − (dμ − μ2 + δ2)

dμ
, B = −δ2

μ
, C = (μ − δ)2

dμ
γ, D = −δ(μ − δ)

μ
γ.

We consider conditions that A + D < 0 and AD − BC > 0. For A < 0, it is seen that A + D <

0 and AD − BC > 0. For A > 0, γ > γ0, with

γ0 = − (dμ − μ2 + δ2)

d(μ − δ)δ
> 0,

implies that A + D < 0.

Lemma 2.6 Assume f (v) = 1 − v, h(v, n) = μv/(dn + v), δ(n) = δ, and χ = 0.

(i) If (dμ − μ2 + δ2) > 0, no pattern formation occurs about the coexistence steady state,
(vs, ns), for system (1) and (2).

(ii) Assume (dμ − μ2 + δ2) < 0. There exists ε1 > 0 such that for each ε < ε1 there exists a
non-empty interval [k1, k2] of unstable modes, so we may expect diffusion-driven instability
about the coexistence steady state,

(iii) in case (ii) if ε > ε1, then (vs, ns) is linearly stable.
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Proof

(i) First, (dμ − μ2 + δ2) > 0 implies A < 0. In addition, B < 0, C > 0, and D < 0 result in
positive M2(k

2) from (11). Hence, we cannot expect diffusion-taxis-driven instability about
the coexistence steady state.

(ii) Second, we consider (dμ − μ2 + δ2) < 0, which gives A > 0. It is also seen that AD −
BC > 0 and for γ > γ0, A + D < 0, which implies that M1(k

2) from (10) is negative.
However, when ε is less than ε0 = −(dμ − μ2 + δ2)/dγ (μ − δ)δ, then A + εD is positive.
Thus, M2(k

2) can be negative. With the same steps in Theorem 2.3, we can find k1 and k2

with k2
1,2 = (μ2 − dμ − δ2 − εdμγ δ + εdγ δ2 ∓ √

G0 + G1ε + G2ε2)/(2εdμ), where

G0 = (−dμ + μ2 − δ2)2,

G1 = 2d(μ − δ)γ δ(μ2 − dμ − 2μδ + δ2),

G2 = γ 2δ2d2(μ − δ)2.

Consequently for ε < ε1 = (−G1 −
√

G2
1 − 4G0G2)/2G2, there exist real k1 and k2. Fur-

thermore, for k1 < k < k2, we have Re(λ)> 0, and we may expect diffusion-driven instability
about the coexistence steady state.

(iii) If ε > ε1, then M2(k
2) is positive for all k. Hence, we cannot expect diffusion-driven

instability about the coexistence steady state. �

Alonso et al. [2] also considered a hyperbolic ratio-dependent functional response for pattern
formation by using numerical exploration of the parameter space.

Now we can follow the argument of the case including an Allee effect. Thus, the reaction–
diffusion system may show diffusion-driven instability depending on parameters μ, d, δ, γ , and
ε. Furthermore, the prey-taxis term tends to inhibit the occurrence of dispersal-driven instability
(see Lemma 2.1 and Section 2.2 for the full argument).

In Figure 8, we show phase portraits of the predator–prey system (1) and (2) with hyperbolic-
ratio functional response and without dispersal terms. As γ increases, the coexistence steady state
bifurcates from an unstable spiral to a stable spiral. Figure 9 demonstrates that this homogeneous
coexistence steady state becomes unstable if diffusion terms are introduced. As a result, patterns
are generated. It is shown that when we introduce a large prey-taxis term, patterns eventually
disappear (see [17] for figure).

2.5. Type II functional response, density-dependent predator death rate,
and logistic growth

Next we consider a hyperbolic functional response and a density-dependent predator death rate
from the setting of the previous subsection and show that pattern formation is possible, provided
that taxis is sufficiently small (Table 1, row 4). We consider type II functional response, h(v, n) =
(α + 1)/(α + v)v as in [27], a density-dependent predator death rate, δ(n) = δ + νn, and logistic
growth for the prey, f (v) = 1 − v with α > 0, 0 < δ < 1, and ν > 0. The coexistence steady state
can be obtained from the root of the following system

n = g1(v) = (1 − v)
(α + v)

α + 1
,

n = g2(v) = ((α + 1)/(α + v)v − δ)

ν
.
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Figure 8. Coexistence steady state is shown to be locally asymptotically stable for system (1) and (2) without dispersal
terms and with h(v, n) = 0.8v/(0.05n + v), f (v) = 1 − v, and δ(n) = 0.76. Time step is dt = 0.005, and γ = 15. Here
the coexistence steady state is (vs, ns) = (0.2, 0.211). Available in colour online.

By applying the intermediate-value theorem, it is shown that there is at least one point v = vs

in the open interval (0, 1) such that g(vs) = 0. Moreover, since ns = g1(vs) > 0 for vs ∈ (0, 1),
ns corresponding to vs is positive as well.

Lemma 2.7 Assume f (v) = 1 − v, h(v, n) = v(α + 1)/(α + v), and δ(n) = δ + νn, then there
exists at least one coexistence steady state, (vs, ns), for the system (1) and (2).

For an homogeneous coexistence steady state (vs, ns), we find

A = 1 − 2vs − ns
(α + 1)α

(α + vs)2
, B = −vs

α + 1

α + vs
,

C = γ ns
(α + 1)α

(α + vs)2
, D = −γ nsν.

It is noted that B < 0, C > 0, and D < 0. Thus for A < 0, we cannot expect spatial pattern
because M1(k

2) < 0 and M2(k
2) > 0 for all k. The condition for A < 0 is rewritten in terms of

parameters α, δ, and ν as follows:

ν >
4(1 − α − δ)

α + 1
.

Therefore, we can summarize the result.
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Figure 9. Coexistence steady state is shown to be locally unstable for system (1) and (2) with h(v, n) = 0.8v/

(0.05n + v), f (v) = 1 − v, and δ(n) = 0.76 and with χ(v) = 0.0. The diffusion coefficient ε is 0.01. Spatial grid size
is dx = 0.25, time step dt = 0.01, and γ = 15. Here the coexistence steady state is (vs, ns) = (0.2, 0.211). Available in
colour online.

Lemma 2.8 Assume f (v) = 1 − v, h(v, n) = v(α + 1)/(α + v), and δ(n) = δ + νn. If ν >

4(1 − α − δ)/(α + 1), then no pattern formation occurs about the coexistence steady state,
(vs, ns), for the system (1) and (2).

This result was also confirmed numerically for selected parameter values (not shown here).
Now we consider the case of A > 0, that is,

0 < vs <
1 − α

2
, equivalently 0 < ν <

4(1 − α − δ)

α + 1
.

The condition for

A + D = −2v2
s + (1 − α − γ (1 + α − δ))vs + γ δα

α + vs
< 0

implies (after some computation)

1 − α − δ > 0. (19)

Under condition (19), we set the positive root of A + D expressed above with v∗, and then v∗ is
between 0 and (1 − α)/2. Thus, for vs in (v∗, (1 − α)/2), we have A + D < 0. Note: v∗ = (1 −
α − γ (1 + α − δ))/4 + (

√
(1 − α − γ (1 + α − δ))2 + 8γ δα)/4. Recall that vs is independent

of γ , so by controlling γ we can make v∗ smaller than vs.
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Now we consider AD − BC > 0. Because A is positive, we cannot guarantee AD − BC > 0.
After rearrangement, we find

AD − BC = γ ns

(
−ν(1 − 2vs) + (α + 1)α

(2α + 2 − δ)vs − δα

(α + vs)3

)
,

which is positive if

G(vs) =
(

−ν(1 − 2vs) + (α + 1)α
(2α + 2 − δ)vs − δα

(α + vs)3

)
> 0.

After some computation, we obtain that

G(0) = −(α + 1)
δ

α
− ν < 0, and G

(
1 − α

2

)
= −BC > 0,

since at vs = (1 − α)/2, we have A = 0. In addition, the continuity of G(vs) on (0, (1 − α)/2)

guarantees that there is at least one root v∗∗ in (0, (1 − α)/2) such that G(v∗∗) = 0. Therefore,
for vs ∈ (v∗∗, (1 − α)/2), we have AD − BC > 0.

Theorem 2.9 Assume that h(v, n) = v(α + 1)/(α + v), δ(n) = δ + νn, f (v) = 1 − v, and
χ = 0. (i)Then at least one coexistence steady state (vs, ns) exists; (ii) there exists a ṽ < (1 − α)/2
such that for all vs ∈ (ṽ, (1 − α)/2), we have A + D < 0 and AD − BC > 0; (iii) there exists
ε1 > 0 such that for each ε < ε1, there exists a non-empty interval [k1, k2] of unstable modes, so
we may expect diffusion-driven instability about the coexistence steady state; (iv) if ε > ε1, then
(vs, ns) is linearly stable.

Proof Property (i) was shown in Lemma 2.7. (ii) It was also shown that for vs ∈ (v∗, (1 −
α)/2), we have A + D < 0 and for vs ∈ (v∗∗, (1 − α)/2), AD − BC > 0. Hence, we define
ṽ = max(v∗, v∗∗), so for vs ∈ (ṽ, (1 − α)/2), we have A + D < 0 and AD − BC > 0.

(iii) Now M2(k
2) is

M2(k
2) = (−εk2 + A)(−k2 + D) − BC,

with A = 1 − 2vs − ns(α + 1)α/(α + vs)
2, B = −vs(α + 1)/(α + vs) < 0, C = γ ns(α + 1)α/

(α + vs)
2 > 0, and D = −γ nsν < 0.

If ε ≥ 1, then D < 0 gives A + Dε ≤ A + D < 0, hence M2(k
2) is always positive, which

results in no diffusion-driven instability for ε ≥ 1. Therefore, ε should be strictly less than
1. Indeed, setting ε0 = vs(1 − α − 2vs)/γ ((α + 1 − δ)vs − δα), then for ε < ε0, we have A +
Dε > 0 and M2(k

2) can be negative for some k.
By setting T = k2, we have a quadratic form of M2(T ), that is, M2(T ) = AD − BC + εT 2 −

(A + Dε)T . Solving this quadratic form gives that there are two positive ε, say ε1 and ε2 with
ε1 < ε2, such that for ε < ε1, M2(T ) has two positive roots, say T1 and T2 with T1 < T2. Therefore,
M2(T ) is negative for k ∈ (k1, k2) with k1 = √

T1 and k2 = √
T2. For unstable modes k ∈ [k1, k2],

we have Re(λ)> 0. Hence we may expect diffusion-driven instability about a coexistence steady
state (vs, ns).

(iv) If ε > ε1, then M2(k
2) is always positive for all k. Hence, we cannot expect diffusion-driven

instability about the coexistence steady state. �

For χ �= 0, we obtain a similar result as in Section 2.2.
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Lemma 2.10 Assume that instability conditions of Theorem 2.9 are satisfied. Then we define

χ∗ = −2v2
s + (1 − α + εγ (δ − α − 1)vs + εγ δα

(α + 1)vsns

such that a coexistence steady state (vs, ns) for system (1) and (2) is linearly stable for each
χ ≥ χ∗. For χ < χ∗, there may exist an interval [k1, k2] of unstable modes.

Proof See Lemma 2.1 �

Figure 10 demonstrates that the stable coexistence steady state without dispersal terms becomes
unstable when diffusion terms are introduced (Theorem 2.9). As a result, patterns are generated. It
is shown that when we introduce a large prey-taxis term, patterns are disappearing (Lemma 2.10
and see [17] for figure).

2.6. Type II functional response, constant predator death rate, and logistic growth

We now modify the analysis of the previous subsection to include a constant rather than density-
dependent predator death rate. This does not allow for the possibility of pattern formation (Table 1,
row 5). We consider type II functional response, h(v, n) = (α + 1)/(α + v)v as in [27], a constant
predator death rate, δ(n) = δ, and logistic growth for the prey, f (v) = 1 − v. Thus the coexistence

Figure 10. Coexistence steady state is shown to be asymptotically unstable for system (1) and (2) with χ = 0,
f (v) = 1 − v, h(v, n) = v(α + 1)/(α + v), and δ(n) = δ + νn with α = 0.2, δ = 0.6, γ = 1.2, and ν = 0.4. The diffu-
sion coefficient ε is 0.01. Spatial grid size dx = 0.25 and time step dt = 0.01 with 60 time units. Here the coexistence
steady state is (vs, ns) = (0.296, 0.291). Available in colour online.
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steady state is

(vs, ns) =
(

δα

(1 + α − δ)
,
(1 + α)α(1 − δ)

(1 + α − δ)2

)
,

which is biologically relevant for 0 ≤ δ < 1. In this case,

A = −δ(α − 1 + δ)

(1 + α − δ)
, B = −δ, C = γ (1 − δ), D = 0,

and consequently,

M2(k
2) = δγ (1 − δ) + εk4 +

(
δ(α − 1 + δ)

(1 + α − δ)
+ δχns

)
k2 > 0

for all k. Thus the homogeneous steady state is linearly stable.
It is noted that type II functional response does not play any role in pattern formation versus type

I. In a numerical solution (not shown) with χ = 6.5 and a randomly chosen initial distribution,
we observe that the solution converges to the coexistence equilibrium (vs, ns) = (0.6, 0.2667).

2.7. Type I functional response, density-dependent predator death rate,
and logistic growth

We now modify the analysis of Section 2.5 to include a type I rather than type II functional
response. This also does not allow for the possibility of pattern formation (Table 1, row 6). We
include competition in the predator death rate, so the predator death rate is δ(n) = δ + νn. In
addition, we consider type I functional response, h(v, n) = v, and logistic growth for the prey,
f (v) = 1 − v. Thus the coexistence steady state is (vs, ns) = ((δ + ν)/(1 + ν), (1 − δ)/(1 + ν)),
which is biologically relevant for 0 ≤ δ < 1. In this case, we obtain

A = − δ + ν

1 + ν
, B = − δ + ν

1 + ν
, C = γ

1 − δ

1 + ν
, D = −νγ

1 − δ

1 + ν
.

We find A < 0 and D < 0 for biologically relevant δ, which result in A + D < 0. Moreover,
B < 0 and C > 0 give rise to AD − BC > 0. In addition, A < 0, D < 0, B < 0, and AD −
BC > 0 give M2(k

2) = AD − BC + εk4 − (A + εD + Bχns)k
2 > 0 for all k. Hence, we note

that M2(k
2) > 0 for all k, hence the homogeneous steady state is linearly stable.

This result was also confirmed numerically for selected parameter values (not shown here).

3. Global stability

In the previous section, we showed that without both the Allee effect and the density-dependent
predator death rate, diffusion, and prey-taxis do not change the local stability of the coexistence
steady state. We choose one of the cases without pattern formation to study the global stability
of (vs, ns). We consider logistic growth for the prey, f (v) = 1 − v, a type I functional response,
h(v, n) = v, a density-dependent predator death rate, δ(n) = δ + νn, and a non-constant prey
sensitivity, χ(v) = b/v, for the spatially homogeneous case of system (1) and (2) on an inter-
val 
 = [0, L] with homogeneous Neumann boundary conditions (3). The following Lyapunov
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function,

Ṽ (v, n) =
∫ v

vs

ṽ − vs

ṽ
dṽ +

∫ n

ns

ñ − ns

γ ñ
dñ,

= v − vs ln(v) − vs + vs ln(vs) + n − ns ln(n) − ns + ns ln(ns)

γ
, (20)

has been used to show the global stability of (vs, ns) [5]. We will show that V (v, n) =∫



Ṽ (v, n) dx is a Lyapunov functional for the spatially dependent problem (1) and (2) in this
case.

Theorem 3.1 Let f (v) = 1 − v, h(v, n) = v, δ(n) = δ + νn, and χ(v) = b/v, with boundary
condition (3). We assume that 4εγ > (ns/vs)b

2, then the functional V (v, n) defined in
Equation (20) is a strong Lyapunov function for system (1) and (2). The sets NL =
{(v, n)|V (v, n) ≤ L} are positively invariant and (vs, ns) is globally asymptotically stable.

Proof Setting NL = {(v, n)|V (v, n) ≤ L} for L large enough, then we claim that the sets NL

are positive invariant. When (v, n) = (vs, ns), V (vs, ns) becomes zero due to Ṽ = 0. For v > vs,
the first term of Equation (20) is positive. Similarly, the second term of (20) is positive. Therefore,
Ṽ is positive in NL. Hence, the functional, V (v, n), is bounded below by zero. Moreover, the
definition of the Lyapunov functional,

Ṽ = v − vs ln(v) − vs + vs ln(vs) + n − ns ln(n) − ns + ns ln(ns)

γ

leads to limv→0,n→0 V (v, n) = ∞ and limv→∞,n→∞ V (v, n) = ∞. Since

∂V (v, n)

∂v
=

∫



v − vs

v
dx and

∂V (v, n)

∂n
=

∫



n − ns

γ n
dx,

V (v, n) is continuously differentiable for v, n > 0. The next step is showing that for (v, n) ∈ NL,
dV/dt is negative definite for a certain parameter space.

dV

dt
=

∫



dṼ (v, n)

dt
dx

=
∫




v − vs

v
v̇ + n − ns

γ n
ṅ dx

=
∫




v − vs

v
vxx + (v − vs)(f (v) − n) dx

+
∫




n − ns

γ n
(εnxx − (χ(v)vxn)x) + (n − ns)(v − δ − νn) dx.

(21)
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We arrange the right-hand side of this equation into two parts; one including the local dynamics
and the other including the dispersal terms. First we look at the local dynamics

∫



(v − vs)(f (v) − n) + (n − ns)(v − δ − νn) dx

=
∫




(v − vs)(f (v) − ns + ns − n) + (n − ns)(v − δ − νn) dx

=
∫




(v − vs)(f (v) − ns) + (n − ns)(v − δ − νn − v + vs) dx

=
∫




(v − vs)(f (v) − f (vs)) + (n − ns)(vs − δ − νn) dx

(see also [5] for the case of a constant death rate of the predator). Here (v − vs) and (f (v) − f (vs))

have the opposite sign with f (v) = 1 − v so that (v − vs)(f (v) − f (vs)) is negative. Similarly,
(n − ns) and (vs − δ − νn) have the opposite sign due to (vs − δ − νn) = ν(ns − n). Therefore,∫


(v − vs)(f (v) − n) + (n − ns)(v − δ − νn) dx is negative unless (v, n) = (vs, ns). We now

take into account the dispersal term of (21) by using integration by parts with zero flux boundary
condition

∫



v − vs

v
vxx + n − ns

γ n
(εnxx − (χ(v)vxn)x) dx

= −
∫




(
v − vs

v

)
v

(vx)
2 + ε

(
n − ns

γ n

)
n

(nx)
2 −

(
n − ns

γ n

)
n

χ(v)nvxnx dx

= −
∫




vs

v2
(vx)

2 + ε
ns

γ n2
(nx)

2 − ns

γ n
χ(v)vxnx dx

= −
∫




XT AX dx,

where

X =
(

vx

nx

)
and A =

⎛
⎜⎜⎝

vs

v2
− ns

2γ n
χ(v)

− ns

2γ n
χ(v) ε

ns

γ n2

⎞
⎟⎟⎠ .

Thus, the matrix A is symmetric. Hence, if A is positive definite, all eigenvalues of the matrix A

are positive. Here tr(A) = vs/v
2 + ε(ns/γ n2) is positive. Thus a positive determinant

�(A) = vs

v2
ε

ns

γ n2
− n2

s

4γ 2n2
χ(v)2

guarantees two positive eigenvalues for the matrix A. As a result, for (v, n) ∈ NL (dV/dt) < 0.
With the specific example of χ(v) = b/v, we have the condition for positive eigenvalues that
4εγ > (ns/vs)b

2. For the special case of χ(v) = 0, i.e. diffusion-only case, the matrix A is
always positive definite for NL. Therefore, the functional V (v, n) is shown to be a Lyapunov
functional under the condition specified above. Thus, V (v, n) → 0 as t → ∞, so v → vs and
n → ns. Therefore, the homogeneous steady state (vs, ns) is globally asymptotically stable. �
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4. Conclusion

In this paper, we considered pattern formation for a predator–prey taxis model of reaction–
diffusion–advection type given by (1) and (2). We considered various reaction terms: for the
predator term they include type I and type II functional responses as well as ratio-dependent
functional responses. We considered constant and density-dependent death rate of the predator
and logistic growth or an Allee-type growth for the prey.

In summary, the following functional forms support spatial pattern formation:

(i) a density-dependent death rate, e.g. δ(n) = δ + νn, and an Allee effect, e.g. f (v) = K(1 −
v)(v − a), and a type I functional response, e.g. h(v, n) = v:
• patterns form with no prey-taxis (Section 2.1),
• patterns persist with small prey-taxis but disappears for large prey-taxis (Section 2.2),
• patterns disappear when Allee dynamics are replaced by logistic dynamics (Section 2.7),

(ii) a hyperbolic ratio-dependent functional response, e.g. h(v, n) = μv/(dn + v) and logistic
growth, e.g. f (v) = 1 − v:
• patterns form with no prey-taxis (Section 2.4),
• patterns persist with small prey-taxis but disappears for large prey-taxis (Section 2.4),
• patterns disappear if a hyperbolic functional response is replaced by a linear functional

response (Section 2.3);
(iii) a density-dependent death rate, e.g. δ(n) = δ + νn, and a type II functional response, e.g.

h(v, n) = (α + 1)v/(v + α).
• patterns form with no prey-taxis (Section 2.5),
• patterns persist with small prey-taxis but disappears for large prey-taxis (Section 2.5),
• patterns disappear if a density-dependent predator death rate is replaced by a constant

predator death rate (Section 2.6).

The significance of this research is as follows; contrary to a diffusion process that may give
rise to pattern formation, prey-taxis tends to stabilize predator–prey interactions (Theorem 2.3).
In the long run, prey-taxis tends to transform heterogeneous environments into homogeneous
environments, which gives an opposite result to the chemotaxis case. Under strong chemotactic
sensitivity, amoebae tend to aggregate [29]. Hence the role of taxis may be strongly related to the
local population dynamics of the species.

In this paper, prey-taxis is shown to tend to reduce the likelihood of pattern formation in spatial
predator–prey systems, but other kinds of taxis may have the opposite effect on pattern formation.
For example, we may investigate prey defences. Prey tend to adjust their relative position to the
predator to reduce predation risk [10,24,37,38]. We may apply the concept of prey-taxis to prey
escape response to predator density. It may refer to predator-taxis. For instance, crayfish (prey)
exhibit different activities depending on the presence of a predator (bass). An increased predation
risk restricts crayfish foraging and increases anti-predator behaviour such as shelter seeking [8,11].
Another interesting taxis is that predators may attract their prey to come nearby [31]. In this case,
prey move towards predators. As a conjecture, from Equation (8), we may predict that positive
predator-taxis (away from predators) tends to generate pattern formation but negative predator-
taxis (towards predators) tends to inhibit pattern formation. However, the detailed argument is
left for future work.
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